Um Mistério com 1000 Anos Resolvido:

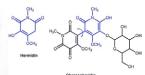
Elucidando a Estrutura Molecular de um Azul Utilizado em Manuscritos da Idade Média

A estrutura molecular da aguarela medieval conhecida como "Folium" foi finalmente resolvida no século XXI.

A abordagem interdisciplinar adotada pelos investigadores portugueses foi a chave para produzir extratos, preparados seguindo as instruções medievais, e mostra que o cromóforo azul/roxo é o corante principal da casca do fruto da *Chrozophora tinctoria*. O estudo envolveu a caracterização multi-analítica da sua estrutura usando técnicas de HPLC-DAD-MS, GC-MS, RMN (¹H, ¹³C, COSY, HSQC, HMBC, INADEQUATE) e computacionais. O composto

azul corresponde à 6'-hidroxi-4,4'-dimetoxi-1,1'-dimetil-5'-{[3,4,5-tri-hidroxi-6-(hidroximetil)tetra-hidro-2*H*-piran-2-il]oxi}-[3,3'-bipiridina]-2,2',5,6(1H,1'H)-tetraona, um derivado da hermidina, que os autores denominaram crozoforidina. Dados experimentais e estudos de modelação computacional mostram que o dímero monoglicosilado é representado por dois isómeros estáveis (atropisómeros), um conhecimento indispensável para a caracterização deste corante medieval em obras de arte, como iluminuras manuscritas medievais, e para testar a sua estabilidade. A crozoforidina, usada nos tempos antigos para fazer um lindo corante azul para pintura, não é uma antocianina - encontrada em muitas flores e frutas azuis - nem indigo, o mais estável corante azul natural. Portanto, constituí per se uma nova classe de moléculas antigas fontes de azul.

Os autores identificam este estudo como um ponto de partida para o desenvolvimento de novas descobertas e como uma relevante contribuição para a preservação do nosso património cultural.



Marta Piñeiro

mpineiro@qui.uc.pt

Crédito: Paula Nabais, Universidade NOVA de Lisboa

Fontes

P. Nabais, J. Oliveira, F. Pina, N. Teixeira, V. de Freitas, N. F. Brás, A. Clemente, M. Rangel, A. M. S. Silva, M. J. Melo, *Sci. Adv.* **6** (2020) eaaz7772. DOI: 10.1126/sciadv.aaz7772

As reações cruzadas de radical-polar (RPCs) ocorrem normalmente num passo único e em condições suaves usando um catalisador fotorredutor ou não fotorredutor. Como proporcionam um aumento da complexidade molecular e uma boa tolerância de grupos funcionais, são uma excelente ferramenta para a síntese de moléculas alvo, em especial na indústria farmacêutica.

Investigadores japoneses desenvolveram uma nova metodologia para RPCs usando fenotiazinas aromáticas como catalisadores fotorredutores orgânicos (10 mol%) na presença de LiBF $_4$ (10 mol%). A inovação desta metodologia consiste no uso de fenotiazinas com elevado potencial de redução ($E_{1/2}$ * = -2,1 V vs. SCE) e formação de radicais persistentes, por excitação com díodos emissores de luz (LEDs) na região do azul, que iniciam o ciclo catalítico. O método consiste numa descarboxilação seguida da formação de ligações

Descarboxilação Fotocatalítica

Usando Fenotiazinas e LEDs